Effects of Radiation, Free Convection and Mass Transfer on an Unsteady Flow of a Micropolar Fluid Over a Vertical Moving Porous Plate Immersed in a Porous Medium With Time Varying Suction

نویسندگان

  • Navin Kumar
  • Tanu Jain
  • Sandeep Gupta
چکیده

In the present paper, an analysis is carried out to study the free convection, thermal radiation and mass transfer effects on an unsteady flow of a viscous incompressible micropolar fluid over a vertical moving porous plate immersed in a porous medium with time varying suction velocity. The plate moves with the constant velocity in the longitudinal direction, and the free stream velocity follows an exponentially small perturbation law. The velocity and temperature distributions are derived, discussed and their profiles shown through graphs. Also, the results of coefficient of skin-friction, the rate of the heat transfer in terms of Nusselt number and the ratio of convective to diffusive mass transport in terms of Sherwood number at the plate are prepared with various values of fluid properties and flow conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetohydrodynamic Free Convection Flows with Thermal Memory over a Moving Vertical Plate in Porous Medium

The unsteady hydro-magnetic free convection flow with heat transfer of a linearly viscous, incompressible, electrically conducting fluid near a moving vertical plate with the constant heat is investigated. The flow domain is the porous half-space and a magnetic field of a variable direction is applied. The Caputo time-fractional derivative is employed in order to introduce a thermal flux consti...

متن کامل

Effects of thermal diffusion and chemical reaction on MHD transient free convection flow past a porous vertical plate with radiation, temperature gradient dependent heat source in slip flow regime

An analytical investigation is conducted to study the unsteady free convection heat and mass transfer flow through a non-homogeneous porous medium with variable permeability bounded by an infinite porous vertical plate in slip flow regime while taking into account the thermal radiation, chemical reaction, the Soret number, and temperature gradient dependent heat source. The flow is considered u...

متن کامل

A Study on free convective heat and mass transfer flow through a highly porous medium with radiation, chemical reaction and Soret effects

The paper addresses the effects of Soret on unsteady free convection flow of a viscous incompressible fluid through a porous medium with high porosity bounded by a vertical infinite moving plate under the influence of thermal radiation, chemical reaction, and heat source. The fluid is considered to be gray, absorbing, and emitting but non-scattering medium, and Rosseland approximation is consid...

متن کامل

Analytical and numerical investigation of heat and mass transfer effects on magnetohydrodynamic natural convective flow past a vertical porous plate

The aim of this investigation is to study the effect of hall current on an unsteady natural convective flow of a viscous, incompressible, electrically conducting optically thick radiating fluid past a vertical porous plate in the presence of a uniform transverse magnetic field. The Rosseland diffusion approximation is used to describe the radiative heat flux in the energy equation. Analytical a...

متن کامل

Diffusion-thermo effects on MHD free convective radiative and chemically reactive boundary layer flow through a porous medium over a vertical plate

The main purpose of this work is to investigate the porous medium and diffusion-thermo effects on unsteady combined convection magneto hydrodynamics boundary layer flow of viscous electrically conducting fluid over a vertical permeable surface embedded in a high porous medium, in the presence of first order chemical reaction and thermal radiation. The slip boundary condition is applied at the p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012